
5th International Conference on Materials and Reliability 

Jeju, Korea, Nov. 27-29, 2019 

Cause and Severity Evaluation of Defects in Cu interconnects 
by Machine Learning of S-parameter Patterns 

T. Y. Kang*, D. Seo, J. Min

Agency for Defense Development, Taean, Choongnam, Korea 

*Corresponding author: ty.kang@add.re.kr

1. Introduction

It is fundamentally important to forecast the failure
of interconnects to achieve high reliability of the 
system. Researchers, so far, have focused on 
means to assess the extent of deviation or 
degradation from expected normal operating to do 
the task above [1]. However, it is also important to 
find out the root cause of the defect to reduce the 
life cycle cost of equipment by decreasing 
inspection costs, downtime, inventory and logistical 
support of fielded and future systems. Failures of 
the electronic systems are initiated by ones in 
interconnects in general. In order for reliability 
monitoring of electronic interconnects, the industry 
and academy has been using either event 
detectors or data loggers that basically monitor DC 
resistance [2-4]. Furthermore, previous research 
work has developed the nondestructive health 
monitoring technique using RF impedance [5-10]. 
Compared to the DC resistance method, the RF 
impedance method can detect defects initiated 
from the surface and interfaces because of the skin 
effect. 
Here, we paid attention to the certain s-parameter 

patterns of each defective interconnect to provide 
information about both the severity of defects and 
the causes. S-parameters describe the electrical 
behavior of electrical networks when undergoing 
various steady state stimuli by electrical signals. 
Many electrical properties of networks of 
components (inductors, capacitors, resistors) may 
be expressed using S-parameters. Also, the 
S-parameter measurements using network 
analyzers are the most basic work of RF 
engineering. Thus, it would be highly convenient if 
the defects could be detected and analyzed by the 
s-parameter measurement itself. As well as
convenience of using it, the s-parameter patterns
give us 2D pattern information such as magnitudes
to frequencies rather than just one value at a time.
This is where the machine learning technique
comes into effect. If certain causes and severities
of defects have certain s-parameter patterns, one
can develop a machine learning algorithm to detect
defects in interconnects with the information of their
causes and severities at once.
In this study, the results of experiments with Cu
interconnect specimens show that the s-parameter
patterns differ from the root cause and severity of
the defects. Furthermore, we modified the
ranking-CNN machine learning algorithm that is

originally a facial age recognition program and 
applied it for detection and the root cause analysis 
of the defects in interconnects. 

2. Experiments

the s-parameter patterns of Cu electrodes with
cracks and oxidated ones were obtained and 
compared to the patterns of the pristine electrodes. 
Interestingly, it is found out that defective 
interconnects showed certain and unique 
s-parameter patterns. If the cause of the defect is
fixed, severity of the defects changes the level of
the pattern without affecting its shape. In addition,
DC resistances of defective specimens had not
been changed while different s-parameter patterns
were obtained compared to the normal
interconnects. It is speculated that the small
defects initiated from the surface affect the signal
propagation within the skin depth of the signal line.
Also, parasitic effects are exaggerated with
increasing working frequencies in RF electronics.
This means that the s-parameter measurement
method can achieve earlier detection of defects in
interconnects than the conventional DC resistance
method does.

3. Machine learning algorithm

In the literature of machine learning research, the
ranking-CNN algorithm is the first work that uses a 
series of binary CNN models trained by all the 
labeled age data for facial age estimation [12]. This 
research work shows that ranking method is better 
than the softmax method for the facial age 
estimation which requires a solution to recognize 
both faces and ages. We modified this algorithm to 
decide both causes (faces) and severities (ages) of 
defects in interconnects from the s-parameter 
patterns. Each basic CNN in ranking-CNN can be 
trained using all the labeled data. In result, we were 
able to distinguish the cause and severity of the 
defect in the interconnect specimen at once with a 
tight error bound and fast process time. 
The estimation model for the early detection and 

instantaneous cause analysis was composed of a 
series of ranking-CNN models. Each ranking-CNN 
of the estimation model classified the defect level of 
the specific cause. In this study, we classified the 
defects into 4 levels: the normal state, the first 
defective state (however still usable), the second 
defective state (highly recommended for 
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replacement), and the third defective state (out of 
order). The entire estimation model consists of 
ranking-CNNs and the number of them was related 
with the number of the defect levels that the 
network is handling. The s-parameter input goes to 
all the ranking-CNNs and we can obtain the 
severity of the defect. After every ranking-CNN has 
decided the defect level with the deep classifier, a 
predictor of the machine learning algorithm finally 
provides the information about the cause and the 
level of the defect in the interconnect. A 
ranking-CNN model which is a subcomponent of 
the estimation network takes the 1-Dimentional 
(1-D) S-parameter pattern as an input and outputs 
the defect level. Because the input of 1-D 
S-parameter pattern has spatial features like peak,
fall-down, rising-up and certain shapes, 1-D
convolutions are recommended for extracting the
feature map rather than the dense layers. Our
ranking network has three 1-D convolutional layers
followed by ReLU and Max pooling layers and the
last connected layer has two output nodes (figure
2).
In figure 2, the C1 layer has 96 filters with a 7×1 

convolutional function and is followed by a 3×1 max 
pooling layer and ReLU. The C2 layer has 256 
filters with a 5×1 convolutional function and is 
followed by 3×1 max pooling layers and ReLU. The 
C3 layer has 384 filters with 3×1 convolutional 
functions and is followed by 3×1 max pooling layers 
and ReLU. Then flattened features of the 
convolutional network is connected to the F4 layer 
with 256 nodes. The F5 layer with 256 nodes and 
the F6 with 2 nodes follow the upper nodes.  

Fig.1 The structure of the estimation for deciding 
severities and causes of the defects 

Fig.2 Architecture of a ranking-CNN 

4. Results

In this section, the performance of the estimation
model is demonstrated. The estimation model 
takes the s-parameter pattern as an input, and 
returns the defect cause and its corresponding 
severity level. We used 360 training s-parameter 
patterns obtained by the experiments and 45 
random test s-parameter datasets. The simulation 
result showed that the estimation system can 
examine the cause and severity of defects in 
interconnects efficiently. The estimation system 
decided the defect cause with 95.56% accuracy 
and the severity level with 91.11%. Regarding 
incorrect inference, an error bound was 1 severity 
level difference compared to the correct answer. 

5. Conclusion

This study has experimentally shown that 
defective interconnects showed certain and unique 
s-parameter patterns. If the cause of the defect is
fixed, severity of the defects changes the level of
the pattern without affecting its shape. Also, the
s-parameter measurement method can achieve
earlier detection of defects in interconnects than
the conventional DC resistance method does. We
modified the ranking-CNN machine learning
algorithm, which was originally developed to
estimate the facial age, to distinguish defective
interconnects with information of the cause and
severity of the defect. Utilizing the training datasets
of s-parameter patterns obtained from pristine,
cracked and photodegraded ITO specimens, our
algorithm returns the defect cause with 95.56%
accuracy and the severity level with 91.11%.
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