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1. Introduction

J-integral has been widely applied to 
characterize fracture properties of both brittle and 
ductile materials. According to continuum elasticity, 
the J-integral around a defect has a physical 
meaning as a configuration force acting on the 
defect [1]. As a result, the J-integral is equal to 
Peach-Koehler (PK) force when it is calculated 
around a stationary dislocation. Especially, the J 
–integral is given by an integral form and it shows
path-independent behavior by the conservation
theorems.

According to continuum elasticity, the same 
result is deduced when it is calculated around an 
uniformly moving dislocation without acceleration 
as long as the system is continuous [2]. In this work, 
however, we theoretically prove that the J-integral 
is no longer equal to PK force when the dislocation 
moves in discrete system and support our 
theoretical result by molecular dynamics 
simulation. 

2. Theory

For an arbitrary closed contour path Γ, the static

J-integral along i -direction is defined by Eq. (1).
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where W  is strain energy density, T  is traction, 

u is displacement and n  is normal vector to Γ.

According to the continuum theory, the J-integral is
equal to Peach-Koehler (PK) force as
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where app is applied shear stress and b  is 

Burgers vector for a stationary dislocation. And it is 
equal for a dislocation that uniformly move without 
acceleration. However, in this work, we proved that 
Eq. (2) should be changed to Eq. (3) when the 
dislocation moves in discrete system. 
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Here, the second term of Eq. (3) is an additional 
force caused by a drag effect around the 

dislocation core and it makes 
discJ be smaller 

than 
contJ [3]. In other words, dragF acts on the 

dislocation opposite to the applied force. In 
particular, the drag force depends on the 
dislocation core width w , and integration size, R . 

3. Molecular dynamics simulation method

First, we construct neat a nickel nanowire that
consists of 900, 60, 6 atoms along x , y  and z  

directions, respectively. The each axis is parallel to 

]211[ , ]111[ , and ]101[ , respectively. To 

calculate interaction between nickel atoms, Angleo 
EAM [5] interatomic potential was used. A periodic 
boundary condition was applied along z  direction 
but atoms were allowed to be relaxed along both 
x  and y  directions. Then, system’s potential 

energy was minimized by using conjugation 
gradient scheme at 0 K. 
After the energy minimization, a single screw 

dislocation was inserted by applying elastic 
displacement field to every atom [5]. Here, both the 
dislocation line and Burgers vector were parallel to 
the z  direction and the Burgers vector was 

defined as ]101[2/1=b . However, the Burgers 

vector was divided into two partial dislocations in 
face-centered cubic crystals to lower the system’s 
energy. As a result, an extended dislocation, which 
consists of two partial dislocations and a stacking 
fault between them, was formed as shown in Fig. 1. 
The Burgers vector of the leading partial was 

]112[6/1=lb  and it of the trailing partial was 

]121[6/1=tb . After the dissociation of a perfect 

dislocation, the energy of system was minimized 
again. 

Fig. 1. (a) Equilibrium dislocation core in nickel. 
Color represents a common neighbor analysis. (b) 
Schematic of an extended dislocation. Partial 
dislocations are represented by blue lines. And the 
shaded region represents a stacking fault between 
them. 

Then, constant stress was applied by pushing top 
and bottom y  surfaces in opposite direction. For 

every 1 fs, the atomic position was updated by NPT 
ensemble with maintaining 0 K and 

0332211 ===  . As a result, the dislocation 

began to move and finally reached to steady state. 
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4. Result

Fig 2. (a) Definition of contour paths to calculate 
the J-integral (b) The J-integral calculation during 

the motion of dislocation under GPaapp 5.1= . 

The dotted line represents PK force defined by Eq. 
(2). 

We defined various circular paths to calculate 
J-integral as shown in Fig. 2(a). As a result, we
observed that the J-integral values were always
lower than the PK force and increased with
increasing the path size as shown in Fig. 2(b). Then,
we compared the deviations between them with

dragF derived by our theory. This is shown in Fig. 3. 

From Fig. 3, there were good agreements between 
our theoretical prediction and the simulation results. 

Fig. 3. Relationship between the J-integral and 
integration radius for the moving dislocation under 

various stress. Red line represents dragF  obtained 

by our theory and blue dots represent MD 
simulation results. Each figure corresponds to 

when (a) GPa50.0=app , (b) GPa00.1=app , (c) 

GPa00.2=app , and (d) GPa00.3=app
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