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1. Introduction 

Feature selection is one of key steps for 
diagnostics and prognostics of mission-critical 
engineered systems. Relevant features among 
candidate features can be different between 
diagnostics and prognostics. A set of features for 
diagnostics should be selected to detect and identify 
failure modes, whereas another set of features for 
prognostics should be selected to capture 
degradation behaviors so that remaining life and/or 
future conditions can be predicted [1]. It is obvious 
that the selected feature subset for diagnostics may 
not always perform as intended for prognostics, vice 
versa. 

Numerous studies presented feature selection 
metrics for diagnostics. However, a limited amount 
of studies was reported in feature selection metrics 
for prognostics. There is no agreement on desired 
characteristics for feature selection metrics. Multiple 
metrics for identical characteristic can be found. 
Thus, this study presents a critical review on the 
existing feature selection metrics.  

The remaining section of this paper is organized 
as follows. In Section 2, existing feature selection 
metrics for prognostics are reviewed. In Section 3, 
counter examples of the existing feature selection 
metrics are presented. Section 4 concludes this 
paper with future works. 
 
2. Review on Existing Metrics for Prognostics 

Three desired characteristics of feature selection 
metrics were suggested by Coble et al. [2]: (1) 
monotonicity, (2) trendability, and (3) prognosability. 
The monotonicity is used to capture the underlying 
positive or negative trend for individual features 
since engineered systems undergo irreversible 
process during deterioration. Mathematically, the 
monotonicity (M) is defined as the absolute 
difference between feature fractions of positive and 
negative derivatives. 

 

M(F) =
 

−
− −

i i#d / df 0 #d / df 0

N 1 N 1
             (1) 

 

where F={fi}i=1:N is the feature sequence with the 
feature value, fi, at ith observation and; N is the 
number of observations; #d/dfi>0 and #d/dfi<0 
represents the number of positive differences and 
negative differences, respectively. 

The trendability (T) is characterized by comparing 
the fraction of positive first derivative and second 
derivative in each feature. It indicates the degree to 
which parameters of a population of systems have 
the same underlying shape. The indication of 
trendabillity for individual features is given in Eq. (2). 
The trendability of a population of sample units is 
formulated as Eq. (3). 

Ti-Coble=
 

+
− −

2 2
i i# d / df 0 # d / df 0

N 1 N 2
            (2) 

 

T(F)Coble= 1-std(Ti-Coble)                       (3) 
 

where #d2/d2fi>0 denotes the number of positive 
second derivative; and std(Ti-Coble) is standard 
deviation of Ti-Coble. 

Prognosability (P) is a measure of deviation of the 
final failure values for each path divided by the 
mean range of the path. Lower value represents the 
wide spread in the final failure values. 
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where M is total number of feature sets under same 
degradation condition; fE is final feature values at 
the end of life; f0 is initial feature value; σ(fE) is 
standard deviations for vectors of fE; and (|fE-f0|)/M 
represents the mean of degradation path. 

Javed et al. [1] presented another metric for the 
trendability as a correlation between features and 
time.  
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where {ti}i=1:N is the ith observation value. Other 
metrics for trendability such as spearman coefficient 
and rank mutual information were described in [3].  
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Another characteristic, robustness, was 
discussed in [4]. The characteristic is used to select 
features with a smooth degradation trend and 
robustness to measurement noise. 
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where f ̅ is smoothed feature value. 
From above observations, it was found that 

previous studies presented different characteristics 
and corresponding metrics for prognostics. There is 
no universally-accepted characteristics and metrics 
for prognostic feature selection. 
 
3. Counter Examples for Existing Metrics for 
Prognostics 

To predict the remaining useful life of engineered 
systems, prognostic models were proposed with the 
concept of degradation signals [5]. A degradation 
signal can be a linear combination of basis functions 
with a random noise term. 
 

L(t)= ( ) +  + '
i it t                           (7) 

 

where θ’ represents the constant that represents the 
amplitude of the degradation signal; β is the 
constant that describe the weight of the basis 
functions; ε(ti) is the white Gaussian noise. 

The degradation signal was generated as 
illustrated in Fig. 1. The fluctuation of the original 
degradation signal decreased as the window size of 
a moving averaging method is increased. 

The metrics for monotonicity and trendability were 
calculated with the three degradation signals as 
shown in Table 1. Depending on the window sizes, 
different metric values were computed. For example, 
M(F) of the original degradation signal was 0.06, 
whereas M(F) of the moving-averaged degradation 
signal with the window size of 10% was 0.74, whose 
change is significant. The metrics can lead t o a 
large amount of deviation depending on how to 
smooth the original signal. 

 

 
Fig.1 Original degradation signal and moving-

averaged ones with different window sizes 
 

Table 1 Effect of window sizes on existing metrics 

Window Size M(F)  Ti-Coble  T(F)Javed  

None 0.06 1.04 0.94 

10% 0.74 1.36 0.96 

50% 1.00 1.50 0.98 

 

4. Conclusions and Future Work 

This paper reviewed existing feature selection 
metrics for prognostics and presented the 
limitations of the existing metrics. The monotonicity 
and trendability metrics can change significantly 
depending how to smoothen the degradation 
signals since the metrics contains the first and 
second derivative terms. The metric provided 
different results depending on the window size. This 
can be problematic in feature selection for 
prognostics. 
A feature selection metric for prognostics should 

not be affected by the random error term. To this end, 
the future work is to develop a reliable feature 
selection metric for prognostics, i.e., metric that can 
capture the degradation trend regardless of 
measurement noise. 
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