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1. Introduction

The main feature of functionally graded materials
(FGMs) is spatially varying microstructures and 
macroproperties. It makes the FGMs can be more 
appropriately applied to some extremely special 
environments to evaluate the mechanical reliability 
of FGMs and understand their deformation and 
fracture behavior. However the effects of the 
material microstructures on the mechanical 
properties of FGMs embedded the crack should not 
be neglected. Therefore, it is essential to study the 
fracture characteristics of FGMs from a 
microstructures perspective. Some significant 
efforts have been made in the study of the fracture 
behavior of FGMs embedded the crack with 
respect to microstructures of the material.  

  Some scholars investigated the uncertainties 
in material properties of FGMs. Rahman and 
Chakraborty presented a stochastic 
micromechanical model to forecast probabilistic 
characteristics of elastic mechanical properties of 
FGMs [1]. A probabilistic fracture analysis 
framework was proposed to study the effects of 
uncertainties on the fracture responses of FGM 
structures by Song et al. [2]. Xu et al. [3] 
investigated the effects of random constituent 
material properties on the dynamic characteristics 
for FGM beam by the random factor method. 
Ferrante and Graham-Brady [4] investigated the 
inherently random nature of graded structures with 
respect to the performance of the component for a 
thermal barrier application. And their results 
showed that deviations in ceramic/metal volume 
fraction would produce significant randomness in 
the stress. Ilschner [5] discussed the complex 
relationships of the macroscopic properties of 
functionally graded components, the local 
composition function and the microstructural 
parameters (porosity, grain size). The foregoing 
archives are based on the randomnees of FGMs 
microstructure. They laid the foundation for further 
study of the uncertain fracture response of FGMs 
with cracks. Chakraborty and Rahman [6] analyzed 
a functionally graded specimen with an edge crack 
under a mixed-mode deformation by a numerical 
method to calculate the statistical moments of 
crack-driving forces and the probability of fracture 
initiation. Taking into account its microstructural 
properties, Wu and Du [7] obtained the effective 
elastic moduli of an inhomogeneous medium with 
cracks. Nguyen et al. [8] estimated the probability 

of crack initiation with uncertainties in the material 
properties by the computational simulation. A 
numerical technique to model the effect of 
uncertainties in the crack geometry on the reliability 
of cracked structures was presented by Chowdhury 
et al.[9]. Lal et al.[10] applied a stochastic extended 
finite element method to the fracture analysis of 
central cracked laminated composite plate under 
uni-axial tension with random system properties. 
Yang et al. [11] studied the bending responses of 
thermo-mechanically loaded compositionally 
graded plates with randomness in material 
properties and volume composition. Lal et al. [12] 
provided a probabilistic tool for incorporating and 
handling the structural material uncertainties in the 
analysis of the structures. In previous 
investigations, only a few of them analyzed 
analytically the crack problems of FGMs 
considering the stochastic mechanical properties. 
Guo et al. [13] developed the analytical model for 
these problems. But they only considered mode-I 
crack problem in it. Zhang et al. proposed an 
analytical approach for the random dynamic 
analysis of a functionally graded material layer 
containing a crack between two dissimilar elastic 
half-planes. But they considered mode-III crack 
problem under transient loadings. Less relevant 
researches on the influences of the randomness of 
microstructural properties on mixed-mode stress 
intensity factors (SIFs) of FGMs can be found.  

  In this paper, to investigate effects of random 
variations in the component volume fractions on 
SIFs of FGMs with an internal slant crack subjected 
to external loadings, an efficient analytical solution 
for modes I and II SIFs of multiple specimens with 
respect to randomness of shear modulus is 
presented. And then based upon the results, 
probability density function diagrams and specimen 
distribution diagrams of modes I and II SIFs are 
drawn, which can be illustrate the effects of the 
randomness of the meso structure of the FGM strip 
on the SIFs.  

2. Body of abstract

This article reports the results of a probabilistic
study on the mixed-mode fracture problem of an 
internal slant crack in a functionally graded material 
strip. The study involves randomness description of 
the micro-structural attributes of functionally graded 
materials; the effects of the random micro-structural 
attributes on the macroscopic properties of 
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functionally graded materials; analytical solutions of 
modes I and II stress intensity factors and analysis 
of its probabilistic characteristics. The influences of 
the randomness in micro-structural component on 
the statistics (e.g. the mean, the standard 
deviation) of the shear modulus of functionally 
graded materials are graphically represented. The 
results also reveal this research may be more 
meaningful on the probabilistic characteristic of 
stress intensity factors of functionally graded 
materials with the larger size slant crack.  

Keywords：Probabilistic characteristics; 

Micro-structural attributes; Randomness; Stress 
intensity factors; Functionally graded materials 

3. Equations, figures, and tables

Equations in this paper are as follows.
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Figures and tables in this paper are as follows. 

Table 1 The mean and standard deviation of SIFs 

for crack samples with different angle when 

/ 20p m  = ,
0= 2SVp VS and / 0.4c h =

Crack 

angle 

Mean 

 of KI (a) / K0 

Standard deviation 

of KI (a)/ K0 

Mean 

of KI(b) / K0 

Standard deviation 

of KI (b)/ K0 

0.1  0.9803 0.0063 1.0861 0.0041 

0.15  0.8630 0.0050 0.9608 0.0036 

0.2  0.7135 0.0036 0.8003 0.0030 

0.25  0.5458 0.0024 0.6194 0.0024 

0.3  0.3762 0.0014 0.4351 0.0018 

0.33  0.2808 0.0010 0.3305 0.0014 

0.35  0.2218 0.0007 0.2654 0.0012 

0.4  0.0796 0.0002 0.1053 0.0006 

Crack 

angle 

Mean 

 of KII (a) / K0 

Standard deviation 

of KII (a) / K0 

Mean 

of KII (b) /K0 

Standard deviation 

of KII (b)/ K0 

0.1  0.3036 0.0023 0.3099 0.001 

0.15  0.4209 0.0028 0.4294 0.0013 

0.2  0.4994 0.0031 0.5092 0.0015 

0.25  0.5307 0.0029 0.5401 0.0014 

0.3  0.5102 0.0025 0.5180 0.0013 

0.33  0.4729 0.0021 0.4792 0.0011 

0.35  0.4376 0.0017 0.4430 0.0009 

0.4  0.2923 0.0009 0.2946 0.0006 
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Fig.1 A slant crack embedded in a functionally 
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graded strip 

 
Fig.2 Distribution of samples values about the 
shear modulus with different modulus ratios 
 

 
Fig.3 Distribution of samples values about the 
shear modulus with different standard 
deviations 
 

 
Fig.4 Different samples curves of the shear 

modulus (in which d = x+0.5) 
 

 
Fig.5 Distribution of mode-I SIFs for different 
samples with different crack length 

 
Fig.6 Probability density function of mode-II SIFs at 
the crack tip-a for different crack length 
 

 
Fig.7 Probability density function of mode-II SIFs at 
the crack tip-b for different crack length 
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