Effective use of carbon embedded electrode by an atmospheric DBD plasma for hybrid supercapacitor

S. M. S. P, G. Gnanasekaran, Md. M. Hossain, R.M. Bhattarai, and Y. S. Mok*

Department of Chemical and Biological Engineering, Jeju National University, Jeju, South Korea

*Corresponding author: smokie@jejunu.ac.kr

1. Introduction

The usages of supercapacitors (SC) encouraging electrochemical storage applications and widely used with the impact of to their enormous power density, quick charging/discharging rate, and outstanding longevity[1-3]. Researchers considerable efforts for supercapacitors committed to finding inexpensive electrode materials with the electrochemical performance[4-6]. excellent Besides, several authors reported that the active electrode materials covered by amorphous carbon layer demonstrated improved cyclic sustainability due to the enhanced structural stability [7]. Herein. easy and effective conversion of pollutant to useful carbon by the low-temperature cost-effective method has not been proclaimed for the fabrication of transition metal phosphide-based SC electrode.

2. Abstract

Hybrid supercapacitors are emerging electrochemical storage device for diverging application due to their high energy density, fast ion transportation, and sustainable life-span. metal Three-dimensional phosphide (3D)compounds have been considered as a promising superior electrode for supercapacitors. Herein, we report a 3D- porous nickel phosphide nanoarrays are successfully enrooted on the surface of nickel foam (Ni₂P/Ni) by low-temperature hydrothermal treatment. Subsequently, nanocarbon embedded over Ni₂P@Ni by efficient utilization of environmentally pollutant ethylene gas via an Remarkably, atmospheric DBD plasma reactor. hybrid supercapacitor device (Ni₂P-C/NF//PNS-AC) delivered an enormous amount of areal capacity (318.8 μAh cm⁻²) and gravimetric capacity (106.2 mAh g-1) at a current density of 1 A g-1. Likewise, the hybrid supercapacitor device accomplished outstanding energy density (108.1 Wh kg-1 at 1 A g-1) and power density (14370.4 W kg-1 at 15 A g-1) with excellent cyclic stability (91.2%) even after 3000 cycles at 7 A g⁻¹.

3. Results

The specific capacity, specific capacitance, mass balance, energy, and power density can be

determined from the charge-discharge profile using the following mathematical equations. The specific capacity of the device is estimated from the CD analysis using the relation[8].

$$Q = \frac{I \times \Delta t}{m (or)A}....(1)$$

$$E = \frac{I \int V(t)dt}{m} \qquad (2)$$

$$P = \frac{E}{\Delta t} \quad \tag{3}$$

Here "Q" is the specific capacity (Ah g⁻¹ or Ah cm⁻²), A is the area of the electrode (cm²), and "I" is the current (A), " Δt " is the discharge time (s), " ΔV " is the potential window (V), and "m" is the mass of the electrode (g). E is the energy density (Wh kg⁻¹), and P is the power density (W kg⁻¹).

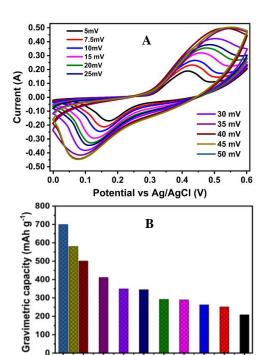


Fig.1 Cyclic voltammetry curves of Ni₂P-C/NF electrode at different scan rates between 5 mV s⁻¹ to 50 mV s⁻¹ (A), Gravimetric capacity of Ni₂P-C/NF

10 15 20 25 30 35 40 Scan rate (mV s⁻¹) electrode effect of the scan rates (5 mV s⁻¹ to 50 mV s⁻¹) (B).

Table 1 Summary of electrochemical performance of Ni₂P-C/Ni electrode and recently reported binder-free electrode materials using three-electrode configurations

Electrode Material	Current density (A g ⁻¹)	Specific capacitanc e (mAh g ⁻¹)	Ref
Ni ₂ P-rGO	1	314.7	[9]
NiCo ₂ O ₄ /NiCo P	22	228.3	[10]
Ni2P-Graphen e	1	70.9	[11]
Ni ₂ P-C	6	699.7	This work

4. Conclusions

We successfully prepared binder-free Ni₂P/NF nanosheets via a typical hydrothermal method followed by phosphorization reaction and their electrochemical performances investigated as an electrode in a three-electrode system. Further, the resulting Ni₂P/NF electrode has improved the capacity by embedding carbon nanoparticles using DBD-jet plasma. The remarkable output is due to the synergic effect of carbon nanoparticles placed interconnected between the space self-assembled Ni₂P/NF electrode benefits the fast ion transportation for the faradic reaction, which facilitates to the enhanced capacity. Collectively, the electrochemical performances suggest that Ni₂P-C/NF as a promising candidate for an electrode material for energy storage devices.

Acknowledgment

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (2018R1A4A1025998).

References

- [1] Y. Huang, L. Peng, Y. Liu, G. Zhao, J.Y. Chen, G. Yu, Biobased Nano Porous Active Carbon Fibers for High-Performance Supercapacitors, ACS Appl. Mater. Interfaces. 8 (2016) 15205–15215.
- [2] K. Krishnamoorthy, P. Pazhamalai, S. Sahoo, S.-J. Kim, Titanium carbide sheet based high performance wire type solid state supercapacitors, J. Mater. Chem. A. 5 (2017) 5726–5736.

- [3] J.-L. Shi, W.-C. Du, Y.-X. Yin, Y.-G. Guo, L.-J. Wan, Hydrothermal reduction of three-dimensional graphene oxide for binder-free flexible supercapacitors, J. Mater. Chem. A. 2 (2014).
- [4] X. Lang, A. Hirata, T. Fujita, M. Chen, Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors, Nat. Nanotechnol. 6 (2011) 232–236.
- [5] Z. Lei, J. Zhang, L.L. Zhang, N.A. Kumar, X.S. Zhao, Functionalization of chemically derived graphene for improving its electrocapacitive energy storage properties, Energy Environ. Sci. 9 (2016) 1891–1930.
- [6] S.W. Lee, N. Yabuuchi, B.M. Gallant, S. Chen, B.S. Kim, P.T. Hammond, Y. Shao-Horn, High-power lithium batteries from functionalized carbon-nanotube electrodes, Nat. Nanotechnol. (2010).
- [7] G.K. Veerasubramani, M.S.P. Sudhakaran, N.R. Alluri, K. Krishnamoorthy, Y.S. Mok, S.J. Kim, Effective use of an idle carbon-deposited catalyst for energy storage applications, J. Mater. Chem. A. 4 (2016) 12571–12582.
- [8] G.K. Veerasubramani, A. Chandrasekhar, S. M. S. P., Y.S. Mok, S.J. Kim, Liquid electrolyte mediated flexible pouch-type hybrid supercapacitor based on binderless core—shell nanostructures assembled with honeycomb-like porous carbon, J. Mater. Chem. A. 5 (2017) 11100–11113.
- [9] C. An, Y. Wang, Y. Wang, G. Liu, L. Li, F. Qiu, Y. Xu, L. Jiao, H. Yuan, Facile synthesis and superior supercapacitor performances of Ni 2P/rGO nanoparticles, RSC Adv. 3 (2013) 4628–4633.
- [10] Q. Zong, H. Yang, Q. Wang, Q. Zhang, J. Xu, Y. Zhu, H. Wang, H. Wang, F. Zhang, Q. Shen, NiCo2O4/NiCoP nanoflake-nanowire arrays: a homogeneous hetero-structure for high performance asymmetric hybrid supercapacitors, Dalt. Trans. 47 (2018) 16320–16328.
- [11] W. Du, S. Wei, K. Zhou, J. Guo, H. Pang, X. Qian, One-step synthesis and graphene-modi fi cation to achieve nickel phosphide nanoparticles with electrochemical properties suitable for supercapacitors, Mater. Res. Bull. 61 (2015) 333–339.