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1. Introduction

From all of the above, we can find that 
multi-objective optimization of actuators/sensors 
has been researched in the field of structure 
vibration and shape control systems. However, a 
comprehensive comparison between different 
artificial intelligent optimization methods for 
actuator placement, number, and orientation has 
not been performed. 
2. Body of abstract

This paper gives a review and discussion on 
multi-objective optimization of actuators/sensors 
using artificial intelligence algorithms. First, the 
placement and orientation optimum problems are 
defined. Second, the finite element analysis results 
for a plate are taken as an example. Third, a 
definition of artificial intelligence optimization 
algorithms are presented. Fourth, the procedures 
of artificial intelligence optimization algorithms are 
presented. Fifth, optimization results on the 
orientations and locations of actuators/sensors are 
presented, and finally, optimization results are 
discussed. 
3. PROBLEM DEFINITION

The placement and orientation optimization 
problems (OOL) are a set of combinatorial 
optimization problems, which are complex and 
difficult to solve. This type of problem involves 
finding the route direction for n piezoelectric 
actuators to place in n locations. Each location is 
placed exactly once, and the inter-location 
deformation degrees are symmetric and known. 
The constituents of the placement and orientation 
optimization problem (OOL) are the following: n is 
the number of locations indexed by i and j; cij is the 
value of the deformation between location i and j; 
and xij are the decision variables. The value of xij 
equals “1” when arc (i,j) is included in the tour, and 
it equals “0” otherwise. 
Now, the OOL can be represented as follows: 
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Obviously, with n (n≤49) piezoelectric actuators, 
determine from a total of m (in this paper, m=49) 
the optimal placements and corresponding d (in 
this paper d=392(49×8)) optimal orientations for 
each actuator to obtain the best route program for 
the vibration response deformation of a thin plate. 
There are two types of optimization problems: For 
the first problem, multiple actuator locations and 
corresponding orientations can be obtained for a 
certain vibration response deformation. For the 
second problem, only one set of actuator locations 
and corresponding orientations are the most 
effective for a certain type of vibration response 
deformation. 
Note that the two problems are related to finding a 
set of optimal locations and orientations for n 
piezoelectric actuators, from a maximum possible 
49 candidate locations and 392(49×8) candidate 

orientations, with more than 392

nC
possible 

solutions, which will yield the best correction to the 
surface distortions of a plate. The actuator 
candidate locations are most likely the same for 
different types of vibration response deformations, 
but the corresponding orientations are usually not 
the same. The second problem is a multiple and 
more challenging problem. These are very large, 
complex and computationally intensive 
combinatorial optimization problems. The number 
of different candidate sets is 
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4. FINITE ELEMENT MODELING

From Fig. 7-10, the dynamical evolution of
spacecraft has been revealed, and essential 
characteristics of dynamics systems have been 
shown. In this paper, the China Space Station has 
been taken as an example, and coupled-structure 
vibration-attitude dynamics and control of 
spacecraft have been discussed. Under the 
condition of large degrees of deformation, it has 
been shown that spacecraft have a complex 
interaction between attitudinal movement and 
flexible-appendage vibration response. 

Fig.1 The plate element[12] is a combination of the 
discrete Kirchhoff theory (DKT) plate bending element 
and a membrane element derived from the linear strain 
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rectangular element with a total of 24 degrees of 
freedom (3 translations and 3 rotations per node). The 
piezoelectric strips are assumed to be perfectly bonded 
on the lower surface of the mirror and are modeled as a 
separate layer. The finite element model consists of 36 
flat shell elements and 49 grid positions. 

Fig.2 Simulation and Experimental Analysis 
Results: 

(a) 

(b) 

(a) a fixed–fixed plate (b) distortion of the plate structure

Fig.3 Table 1 Strain data 

-3 -2 -1 0 1 2 3 

-3 0.0001 0.0034 -0.0299 -0.2450 -0.1100 -0.0043 -0.0000 

-2 0.0007 0.0468 -0.5921 -4.7596 -2.1024 -0.0616 0.0004 

-1 -0.0088 -0.1301 1.8559 -0.7239 -0.2729 0.4996 0.0130 

0 -0.0365 -1.3327 -1.6523 0.9810 2.9369 1.4122 0.0331 

1 -0.0137 -0.4808 0.2289 3.6886 2.4338 0.5805 0.0125 

2 0.0000 0.0797 2.0967 5.8591 2.2099 0.1328 0.0013 

3 0.0000 0.0053 0.1099 0.2999 0.1107 0.0057 0.0000 

5. OPTIMAL RESULTS OBTAINED USING
ARTIFICIAL INTELLIGENCE ALGORITHMS
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Fig 2 Optimal location and corresponding configuration direction obtained by the a) GAOOL 

algorithm under optimization program 1; b) TSOOL algorithm under optimization program 1; 

c) ACA algorithm under optimization program 1.
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Fig 3 Optimal location and corresponding configuration direction obtained by the a) GAOOL 

algorithm under optimization program 2; b) TSOOL algorithm under optimization program 2; 

c) ACO algorithm under optimization program 2.
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Fig 4 Optimal location and Fig 3 corresponding configuration direction obtained by the a) 

GAOOL algorithm under optimization program 3; b) TSOOL algorithm under optimization 

program 3; c) ACO algorithm under optimization program 3. 
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Fig 5 Optimal locations and corresponding orientations for the vibration response deformation 

obtained by the a) GAOOL algorithm and optimal control algorithm under optimization 

program 3; b) TSOOL algorithm and optimal control algorithm under optimization program 3; 

c) ACO algorithm and optimal control algorithm under optimization program 3.

6. CONCLUSIONS

In this paper, the optimal position and orientation
of piezoelectric actuators and sensors for active 
vibration and shape control are considered. For 
each optimization problem, a modified optimization 
criterion is used. It is derived from the usual 
approaches, ensuring minimization of the deflection 
of the structure and accounting for the actuation 
system, which should enable less electrical energy 
to be used. An optimal control algorithm and twelve 
types of artificial intelligence algorithms are well 
adapted to solving these optimization problems, 
where the criteria are not convex and not easily 
derivable. Several applications are presented in the 
case of a plate-like structure. Simulations show the 
efficiency of the twelve types of algorithms for these 
optimization problems. The use of these algorithms 
allows us to easily account for the PZT orientations 
and locations in the optimization process. 
Numerical results demonstrate that the present 
algorithm can lead to light and optimum actuator 
positions and orientations that consume less 
electrical energy and enhance the structural shape 
control. 

In addition, these methodologies have high 
computational efficiency, and there are no 
miscellaneous assumptions for them. If they can be 
used in practical engineering, they will be easy to 
adapt to arbitrary deformations of the plate-like 
structure, and we will still obtain the desired shapes. 
We know that some desired shapes are more 
difficult to achieve, but artificial intelligence 
algorithms can offer extra parameters, actuator 
orientations, and locations. 
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