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1. Introduction

The dynamics and control evolution of spacecraft
have not been researched widely. The research on 
the dynamics and control evolution of spacecraft 
primarily addresses the interaction mechanism of 
different parts of spacecraft. In this paper, several 
aspects of dynamics and control evolution will be 
discussed. 
2. Body of abstract

This paper discusses the dynamics and control
evolution of flexible spacecraft. First, the 
conception of evolution is introduced. Second, 
factors such as the flexible structure vibration 
induced by movement of spacecraft, environmental 
disturbances, the robust control system of 
spacecraft, the composite control system of 
spacecraft, the coupled dynamics interaction of 
spacecraft, dynamics parameters variation during 
the implementation of the mission, and attitude 
dynamics and control during spacecraft attitude 
maneuvers are discussed. Finally, future research 
suggestions are provided. 

3. Research Progress of Dynamics and Control
Evolution of Flexible Spacecraft

Flexible structure vibration induced by 
movement of spacecraft.  

Most of the previous studies pay more attention to a 

specific condition of spacecraft movement; they tend to 

develop only one type of technology and address 

vibration problems. One important factor is the stability 

of the control system. However, the dynamics evolution 

of structure vibration has not been researched. 

Disturbances lead to reduce performance of 
spacecraft. 

Most of the previous-cited researchers 
considered environmental factors, flexible structure 
vibration, actuator effectiveness fault as uncertainty 
and external disturbance in the attitude control 
system. The interactions among uncertainty, 
disturbance and the attitude control system are 
usually not considered as main factors in the 
attitude control system. However, the interactive 
mechanism among attitude control, uncertainty and 
external disturbance was infrequently researched. 
Furthermore, the uncertainty, external disturbance 
and attitude control evolution of spacecraft have not 
been researched. 

Robust control system is right way to 
improve the performance of spacecraft. 

The previous studies show that robust control 
was an important aspect of spacecraft attitude 
control. Previous research was more likely to focus 
on control strategy design. To improve the 
effectiveness of the control algorithm, many 
scholars tended to apply intelligent control theory. 
Furthermore, a flexible appendage is a key factor of 
controller design. However, the dynamic evolution 
of structure vibration has not been researched. 

Composite control system is important form 
of style for improving the performance of 
spacecraft 

In the previous studies, most researchers 
considered control strategy design as a very 
important aspect of the composite control of 
attitude, maneuver and vibration suppression. They 
tended to design control algorithms for the 
composited control system that were based on the 
control theory. However, the interaction mechanism 
between attitude control and flexible structure 
vibration was little researched. Furthermore, the 
dynamics and control evolution of spacecraft have 
not been researched. 

Coupled dynamics interaction has an 
important influence on the control of 
spacecraft. 

In the previous literature, most researchers 
considered multi-field coupling and rigid-flexible 
coupling as a very important aspect of the coupled 
dynamics interaction of spacecraft. They usually 
understood the mechanism of coupling, but the 
interaction mechanism evolution in multi-field 
coupling has not been researched widely. 

Dynamics parameters variation during the 
implementation of mission 

In the previous literature, the dynamics 
parameters of systems were usually the key factor 
of spacecraft dynamics and control systems. 
Parameter variations made control systems more 
complex, but the interaction mechanism of 
parameter variations was not widely researched. 
Furthermore, the control parameters evolution of 
control system has not been systematically 
researched. 

Attitude dynamics and control during 
spacecraft attitude maneuver 

In the previous literature, many factors were 
considered with respect to the attitude control 
system. Most previous studies considered specific 
conditions, but the interaction mechanism evolution 
of attitude control and dynamics was not 
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considered. In addition, if the interaction 
mechanism evolution could be revealed, the 
attitude dynamics and control system could be 
understood from a macroscopic point of view. 

4. Recommended Future Research

It is well known that the dynamics and control of
flexible spacecraft have contributed to spacecraft 
development. This field of research has helped us 
find and solve many scientific problems. With the 
development trend towards large-sized spacecraft, 
there are many challenges for future development. 
For example, the main feature of huge spacecraft in 
the future will be one that is strongly nonlinear, the 
evolution of the dynamics and control of huge 
spacecraft will become more complex, and it will be 
a challenge to reveal the evolution mechanism of 
large spacecraft. However, this is the foundation of 
the coordinated control of spacecraft which will be a 
key factor in the success of high-precision control 
and high reliability. As a result, future spacecraft is 
evolving as a multidisciplinary research subject and 
it is necessary to research the multidisciplinary 
evolution mechanism of the dynamics and control 
of spacecraft. 
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