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1. Introduction

For structural systems where the input variables
are uncertain, even if the distribution type is known, 
sparse or inaccurate data will cause the distribution 
parameters to be unavailable. If a probability 
distribution is used in the distribution parameters, 
then family-distributed relatives can be used to 
represent these random variables. Therefore, for 
the structural systems with both the uncertainties of 
input variables and their distribution parameters, 
three sensitivity indices are proposed by Wang 
[1-2] based on the Sankararaman’s method [3] to 
measure the influence of input variables, 
distribution parameters and their interactive effects. 
With those sensitivity indices, analysts can make a 
decision that whether it is worth to accumulate data 
of one distribution parameter to reduce its 
uncertainty. However, the effectiveness of these 
uncertain distribution parameters on the reliability 
optimization results have not been researched. 
Therefore, taking crank-slider mechanism as 
example, a reliability optimization design method 
considering uncertainties of distribution parameters 
is proposed. 

2. Parametric representation of uncertain
distribution parameters
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The maximum likelihood estimations of ξ  under 

distribution type 
kθ  are acquired by maximizing 

( ), kL θξ . Further, the uncertainty of distribution 

parameters ξ  is calculated using Bayes’ theorem. 
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3. Sensitivity analysis of uncertain distribution
parameters

According to the law of total variance, the input 
variable main effect sensitivity index considering 
the distribution parameters can be equivalently 
described as [1]: 
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−
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equation can be derived with the assumption that 
the input variables are mutually independent, 
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Thus, the main effect can be equivalently 
expressed by the following equation, 
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To further simplify the double-loop process, the 
multiplication dimension reduction of the response 

function ( )g x proposed by introducing logarithmic 

exponential transformation by Zhang [4] ,and Yun 
[5] uses Gaussian integral formula to process
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where
ic is the average of the input variables and 

 1 2, , , nc c c=c is the reference point of the model

input variables X, p is weight

p ( )
jX jf x x =  (7) 

In this paper, a new method is proposed to deal 
with the Eq. (6) to improve the accuracy of 

( | )
iX iE Y X

−
. The integral global

variable ( 1,2, , )iX i n=  is equally probabilistically 

divided into q subintervals that do not overlap each 

other and fill the entire value area. The interval is 
determined by 3 rules, and then equally divided 

into ( )2 1n +  cells, the step size h and the endpoint
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value between each cell are known, and then the 
adaptive sigma point is obtained by using the 
unscented transformation method in each 
subinterval and corresponding weights. The 
adaptive sigma point is used instead of the variable 

iX , so that the solution obtained by the unscented 

transformation method in the local region is more 
accurate. 

The specific process of obtaining sigma points 
and corresponding weights by using the unscented 
transformation method: 
 (1) Generating sigma points and corresponding

weights according to the original input variable
probability distribution characteristics;

 (2) Nonlinear transformation of sigma points;
 (3) Approximate estimation of the moment of the

output variable according to the converted sigma
point and the corresponding weight.

Generally, the standard unscented 
transformation method is adopted, 

and ( )2 1n + sigma points are taken in each

subinterval, and
0W 0= . Eq. (6) can be 

approximated as, 
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where
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4. Reliability optimization algorithm

The example of a crank-slider mechanism in Ref.
[6] is used for demonstration the effectiveness and
application of the proposed method. The
mechanism is shown in Fig. 1. The length of the

crank 
1x , the length of the coupler

2x and the 

external force 
3x are strong statistical variables. 

Different from Ref. [6], the distribution parameters 

of material Young’s modulus 
1y and the yield 

strength 
2y of the coupler are uncertain due to 

sparse sampling data. The friction coefficient 
1z

and the offset 
2z are interval variables. The 

internal diameter 
1d and external diameter

2d of 

coupler are 25mm and 60mm, respectively. 
The system performance function is defined by 

the difference between the critical load and the 
axial load, which is written in Eq. (10),  
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Through comparing the AIC values of the seven 
candidate distribution types, the sensitivity between 
distribution parameters of y  and performance 

function G  are calculated, and the structural 

parameters are optimized based on the proposed 
reliability optimization method. 

Fig. 1 A crank-slider mechanism 
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